જો  ${a_2},{a_3} \in R$ એવા છે કે જેથી $\left| {{a_2} - {a_3}} \right| = 6$ અને  $f\left( x \right) = \left| {\begin{array}{*{20}{c}}
1&{{a_3}}&{{a_2}}\\
1&{{a_3}}&{2{a_2} - x}\\
1&{2{a_3} - x}&{{a_2}}
\end{array}} \right|,x \in R.$ હોય તો $f(x)$ ની મહત્તમ કિમત મેળવો.

  • A

    $36$

  • B

    $24$

  • C

    $12$

  • D

    $9$

Similar Questions

જો વિધેય $f(\mathrm{x})=\frac{\cos ^{-1} \sqrt{x^{2}-x+1}}{\sqrt{\sin ^{-1}\left(\frac{2 x-1}{2}\right)}}$ નો પ્રદેશ $(\alpha, \beta]$ હોય તો  $\alpha+\beta$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]

જો $f(x) = \sin \log x$, તો $f(xy) + f\left( {\frac{x}{y}} \right) - 2f(x).\cos \log y =$

ધારો કે વિધેય :$f:\left[0, \frac{\pi}{2}\right]$ $ \rightarrow$ $R$, $f(x)=\sin x$ અને $g:\left[0, \frac{\pi}{2}\right] $ $\rightarrow$ $R$, $g(x)=\cos x$ દ્વારા આપેલ છે. સાબિત કરો કે $f$ અને $g$ એક-એક છે, પરંતુ $f+ g$ એક-એક નથી. 

વિધેય $f\left( x \right) = {\cos ^2}\left( {\sin x} \right) + {\sin ^2}\left( {\cos x} \right)$ નુ આવર્તમાન મેળવો.

જો $f(x) = {\cos ^{ - 1}}\left( {\frac{{2x}}{{1 + {x^2}}}} \right) + {\sin ^{ - 1}}\left( {\frac{{1 - {x^2}}}{{1 + {x^2}}}} \right)$ તો  $f(1) + f(2)$ ની કિમંત મેળવો.